簡單序時平均數法 也稱算術平均法。即把若干歷史時期的統計數值作為觀察值,求出算術平均數作為下期預測值。這種方法基于下列假設:“過去這樣,今后也將這樣”,把近期和遠期數據等同化和平均化,因此只能適用于事物變化不大的趨勢預測。如果事物呈現某種上升或下降的趨勢,就不宜采用此法。
加權序時平均數法 就是把各個時期的歷史數據按近期和遠期影響程度進行加權,求出平均值,作為下期預測值。
簡單移動平均法 就是相繼移動計算若干時期的算術平均數作為下期預測值。
加權移動平均法 即將簡單移動平均數進行加權計算。在確定權數時,近期觀察值的權數應該大些,遠期觀察值的權數應該小些。
上述幾種方法雖然簡便,能迅速求出預測值,但由于沒有考慮整個社會經濟發展的新動向和其他因素的影響,所以準確性較差。應根據新的情況,對預測結果作必要的修正。
指數平滑法 即根據歷史資料的上期實際數和預測值,用指數加權的辦法進行預測。此法實質是由內加權移動平均法演變而來的一種方法,優點是只要有上期實際數和上期預測值,就可計算下期的預測值,這樣可以節省很多數據和處理數據的時間,減少數據的存儲量,方法簡便。是國外廣泛使用的一種短期預測方法。
季節趨勢預測法 根據經濟事物每年重復出現的周期性季節變動指數,預測其季節性變動趨勢。推算季節性指數可采用不同的方法,常用的方法有季(月)別平均法和移動平均法兩 種:a.季(月)別平均法。就是把各年度的數值分季(或月)加以平均,除以各年季(或月)的總平均數,得出各季(月)指數。這種方法可以用來分析生產、銷 售、原材料儲備、預計資金周轉需要量等方面的經濟事物的季節性變動;b.移動平均法。即應用移動平均數計算比例求典型季節指數。
市場壽命周期預測法 就是對產品市場壽命周期的分析研究。例如對處于成長期的產品預測其銷售量,最常用的一種方法就是根據統計資料,按時間序列畫成曲線圖,再將曲線外延,即得到未來銷售發展趨勢。最簡單的外延方法是直線外延法,適用于對耐用消費品的預測。這種方法簡單、直觀、易于掌握。
時間序列預測法的運用例子
某一城市從1984年到1994年中,每年參加體育鍛煉的入口數,排列起來,共有10個數據構成一個時間序列。我們希望用某個數學模型,根據這 10個歷史數據,來預測1995年或以后若干年中每年的體育鍛煉人數是多少,以便于該城市領導人制訂一個有關體育健身的發展戰略或整個工作計劃。不同的時間序列有不同的特征,例如一個人在一年中每天消耗的糧食基本上是相同的,把這365個數字排列起來。發現它所構成的時間序列總保持在一定水平,上下相差不太大,我們稱它是"平穩"時間序列。它的取值和具體是哪個時期無關,只和時期的長短有關。一般來說.只有屬于平穩過程的時間序列.才是可以被預測的。
頁次:2/2 首頁 上一頁 下一頁 尾頁 Go: |